产生非球面的新机构原理

潘 君 骅* (南京天文仪器厂)

'提要

本文提出了两种产生常用非球面机构的原理。从不同于已有各种机构的根本原理出发,找到新的 产生非球面的途径,并论证了其几何关系。这种方法的特点是以线接触产生非球面,因此将得到平滑的表面。

天文光学系统及红外技术中的光学系统都不可避免地要用到非球面。从大口径天文望 远镜的发展趋势看,主镜的相对口径在不断地增大。六十到七十年代的大口径望远镜主镜的 焦比已达 f/3~f/2.5,今后有继续增大的倾向,因为这样可以大大降低大型望远镜的造价。 在红外系统中,则早已采用 f/1.5~f/1 的主反射镜了。众所周知,制造非球面的难度是和焦 比的三次方成比例,但只和口径的一次方成正比。因此,天文望远镜总体设计的趋势对于 非球面光学工艺提出了新的要求。虽然依靠熟练工人的经验和技巧能够解决单件的、难度 很大的非球面加工,但是,如果下一代的望远镜要用数十台 2~4 米口径的望远镜列阵来组 成的话,那么单件的生产是很难胜任的。在红外技术中,已经发现大量生产一种红外光学装 置的主要障碍常常是非球面加工。这就要求具有效率很高的机器来完成大量制造高难度非 球面的任务。

过去的一些非球面机构,如仿形、运动轨迹和程序控制等,都是从构成面形点的轨迹着 眼来考虑的,这些机构都因存在各自的严重缺点而不能得到普遍推广。

从铣磨球面加工得到启发,发现如果用薄壁铣磨环在铣磨球面加工的基础上作一定的 运动,或调整某种几何关系,可以产生一定类型的非球面。这种获得非球面的原理和过去完 全不同。对于凹的非球面来说,是利用次法距的特性,对于 Sohmidt 曲线来说,是利用空间 角来产生的。以下我们对这两种情况分别讨论其几何学关系。

一、产生 e²>0 的二次凹非球面

图 1 中 \widehat{OM} 为半径为 $\stackrel{\circ}{R}$ 的起始球面, $\widehat{OM'}$ 为要求加工成的非球面, \overline{PC} 为铣磨环的轴, \overline{OM} 为铣磨环口的投影, MM' 为在镜面边缘应磨去的非球面度。

在磨非球面之前, 先使铣磨环口与起始球面吻合, 这时铣磨轴与机床主轴的交点 *O*, 即 起始球面的中心, 就是该二次非球面的顶点曲率中心。从这个起始球面开始, 在铣磨的同 时, 使工具轴在图平面内绕一个瞬时中心转动, 这个瞬时中心是从 *O* 点开始, 沿着 *OM* 直线

收稿日期: 1980年2月17日

^{*} 此工作系作者在长春光学精密机械研究所期间所做。

移动, 在 M 点停止。在这个过程结束时, 工具轴好象绕 P 点转过了一个 α 角, 并且与工件 轴的交点从 O 移到了 G'。很明显, G'将是镜面边缘带的法线与光轴的交点。只要注意到工 具是绕瞬时中心逐渐转过 α 角, 而不是绕 P 点一下子转过 α 角, 我们就可以知道磨出的将 是连续的表面, 而不是在 P 点相接的两个球面。需要证明这个连续表面就是我们所要加工 成的二次非球面。 这里必须证明的主要问题是图 1 中的线段 MM'等于所要求的表面非球 面度, 即 $MM' = \frac{D^4 e^2}{1024 f^3}$, 其中 D 为镜面直径, f 为焦距, e 为二次曲面偏心率。

证明的逻辑关系是这样: 假如 CC' 等于某一非球面的次法距差,即 $\Delta R = xe^2$,则 MM'等于该非球面与顶点球比较的非球面度,即 $MM' = \frac{D^4e^2}{1024f^3}$ 。

从图1中可以直接看到

故

从而

$$OM \approx \frac{D}{2}, \ PM \approx \frac{D}{4}, \ \theta \approx \frac{D}{4\dot{R}}, \ \delta \approx \theta \cdot \Delta R_{\circ}$$
$$\delta \approx \theta \cdot x \cdot e^{2} = \frac{D}{4\dot{R}} x e^{2},$$
$$\alpha = \frac{\delta}{\dot{R}} = \frac{D}{4\dot{R}^{2}} x e^{2}_{\circ}$$

又因
$$x \approx \frac{D^2}{8 \mathring{R}}$$

故

$$\alpha \approx \frac{D^{4}}{32\dot{R}^{3}}e^{2},$$

从而
 $MM' \approx \frac{D}{4} \cdot \alpha = \frac{D^{4}e^{2}}{128\dot{R}^{3}} = \frac{D^{4}e^{2}}{1024f^{3}}o$

另一个问题必须回答的是加工出来的非球面在中间各带的情况如何? 图 2 是未磨完时的顶视图, 虚线圆是刚要脱离接触的带, 图 3 是圆筒薄壁磨具端面的三个时间的投影, 其中

OM 是初始状态, O'M' 是最后状态, 而 \tilde{OM}' 是中间某一时刻的状态。图 4 说明工具是如何 滚过去的, 其中画出 \bar{OM} 线而不是 OM, 因为磨具是沿着固定的斜面滚动的, 这个斜面与工 具端面投影的初始位置相重合。图 3 及图 4 中的 s 点都是滚动的瞬时中心。为了回答上面 的问题, 必须解空间几何问题以找出与 \tilde{y}' 带相应的 \tilde{C}' 的位置, 并和给定的非球面的理论值 加以比较。这个问题的分析解是很复杂的, 我们计算了一些具体数值。不幸的是中间带的 中心 \tilde{C}' 不是和给定二次曲面的应有值完全重合。这说明有剩余误差存在。 目前有关这个

问题正在继续进行研究中。但是很明显,它不会造成严重 困难,因为在抛光阶段总是要进行检验并加以修磨的。另 一方面,可以在滚动半径 r 上予以修正,这个半径可以利用 使钢板变形而得到。

其次, 求r的值(见图 5)。图 5中 OL 是半径为r的圆

图 4

的一段弧,处于起始状态,即在 O 点与 OM 相切。当非球面铣磨结束时,OL 弧滚动了一 个 α 角,成为 O'M 弧,L 点降到与 M 重合,而 O 点升到 O'。通过 O' 作 O'M 弧的切线,交 OM 于 P 点。显然,M 点下降到 M',而 MM'即磨去的非球面量。从图 5 不难看出:

111 (D/0)2/0

文
$$MM' \approx (D/2)^{-/2t}$$
,
又 $MM' \approx D^4 e^2 / 1024 f^3$,
故得到 $r = \frac{128 f^3}{e^2 D^2} = 128 D \left(\frac{f}{D}\right)^3 / e^2$,

从上面可以看出,这个方法实际上是把磨非球面转化为制造一个半径为 r 的模板, r 的 值完全由非球面的参数决定。其机构是在一般铣磨球面的基础上使工具轴有一个附加的小 的转动。由于产生非球面的全部过程是在转过一个很小的 a 角中完成, 而工具与工件除了最 边缘点 M' 外都是线接触,故可期望有连续而平滑的表面以及较高的精度。转角 a 只和非球 面的相对孔径及偏心率有关。对于几种相对孔径及偏心率的情况下,转动角 a 数值列于表 1。

	-	~ -	
e ² 相对孔径	0.1	1.0	10
	0.0224°	0.2237°	0.2379°
	0.0028°	0.0279°	2.2796°
f/3	0.0008°	0.0083°	0.0828°

二、产生 Schmidt 型曲线

经典的 Schmidt 曲线是在 0.707 带有最低点,如图 6(a) 所示,有时为了使色差影响最小,将最低点移到 0.85 带,如图 6(b) 所示。制造这种曲线有各种各样的办法,这里不一一评述。

图 6

在用铣膀法磨制球面及平面的过程中,发现如果工具轴在垂直于对称平面(包含工件轴

及工具轴的平面)的方向倾斜一个小的角度 8, 则在工件表面便产生中间某带特别低的现象。 经过分析与计算,发现可以利用这个"缺点"来 产生 Schmidt 型曲线。曲线不是靠一次铣磨形 成,而是需要经二次或三次调整工具的倾角来 分段获得。用一个通用公式逐点计算偏离量, 使逼近给定数据。以下我们推导出计算的公式 以及举一个实例以观察误差情况,如图7所示, 其中: R 为工件的半通光口径, O 为工件中心, r为铣磨环半径, to为铣磨环中心离开工 件中心的距离, P为铣磨环上的某点, y为 从P点到工件中心的距离,即带高, ymax 为 磨环能及的最高带, ymin 为磨环能及的最低 带, y_r 为非球面磨量最大的带,这时p=r, p_a 铣磨环上 P 点离对称 面 的 距 离, s 为 空 间 角。

从图 7 中可以看到, 如果将工具轴以 8 点为转动中心, 在垂直于对称面的方向倾斜 6 角, 则

薄壁圆环工具的端面有一半切入工件表面,这样铣磨出来的表面如图 8 所示。很明显,这个磨出的面上各点离开原始平面的量和距离 py 成正比。为了方便地推导 py 和 y 的关系,令 R=1。从图 7 可以看出:

$$y^2 = p_y^2 + (t_0 + \sqrt{r^2 - p_y^2})^2$$
。
解出 p_y 得

$$p_y = \sqrt{r^2 - \left[\frac{y^2 - t_0^2 - r^2}{2t_0}\right]^2} \,. \tag{1}$$

从图得

$$t_{0} = \sqrt{y_{r}^{2} - r^{2}}, \qquad (2)$$
$$y_{\max} = t_{0} + r, \quad y_{\min} = t_{0} - r_{0}$$

P点的磨量 x,为

$$x_p = p \cdot \varepsilon,$$

.

其中 8 根据曲线的最大偏离量 a max 及磨环半径 r 确定:

$$\varepsilon = \frac{x_{\max}}{r},$$
$$x_{p} = \frac{x_{\max}}{r} \cdot p_{o}$$

故

根据这些关系式,有了实际曲线的数据,就可以解出环工具的半径 r 及磨头中心位置 to, 其步骤如下。

根据给定的曲线数据,找出非球面量最大的带 yr 之值,代入(2)式,再将 to 代入(1)式得到 消去 to 值的(1)式。为了解出 r,还要从给定数据中取边缘带的磨量 x1.0 与最大磨量 x max,写出

$$p_{1.0} = \frac{x_{1.0}}{x_{max}} \cdot r_{o}$$

将此关系代入已消去 to 之(1)式即可解出 r 之值。再从(3)式算出各带磨去的量 xpo

今计算一条实际曲线,以观察剩余误差情况。 给定的是一投影电视上的 Schmidt 校正 板曲线(见表 2 左边的数据)。从中可知最大的非球面量在 y = 0.85 带,即

$$x_{\max} = x_{0.85} = 0.633586$$
 毫米

因此

$$t_0 = \sqrt{0.85^2 - r^2},$$

故
 $p_y = \sqrt{r^2 - \frac{(y^2 - 0.7225)^2}{4(0.7225 - r^2)}}$

此外,从曲线数据上可看到 y=1.0 时,非球面量 x1.0=0.52208 毫米,故

$$p_{1.0} = \frac{x_{1.0}}{x_{\max}} \cdot r = 0.824008 r_{o}$$

将此 p1.0 值代入上式,并取 y=1,解得两个 r 值:

$$r_1 = 0.79172754$$
 $ext{i} r_2 = 0.3093131$

以及 $(t_0)_1 = 0.3093$ 或 $(t_0)_2 = 0.7917_0$

将 R 值相乘得实际尺寸:

 $r_1 = 51.462$ 毫米, $r_2 = 20.105$ 毫米,

47

48				ť	6	学		学	4	股						1卷
	د. 1.805°	差量 mm	+0.000001	-0.000336	0	-0.000344		+0.00427	+0.037785	+0.184185						
环 30.10535 mm)	(51.462 mm) 0.0315133 弧度。	s (实际)mm	0.522079	0.6233932	0.633586	0.624533		0.5576485	0.4260656	0,1668149	0					
r=0.3093131 +	$t_0 = 0.7917$ tin = 31.357 mm $e = \frac{0.633586}{20.10535} =$	$\overline{p}ig(egin{array}{c} y=0.85 \ \mathrm{kf} ig) \ p=1 \ ig)$	0.82400665	0.98391246	r	0.9857115		0.8801465	0.6724669	0.2632869	0					
	ъ	$p\left(rac{y=0.85}{p=r} ight)$	0.25487605	0.30433701	0.3093131	0.30489347		0.27224083	0.20800281	0.08143808	0					
	× 度≈0.706°	差量 mm	+0.00009	-0.000336	0	-0.00343	+0.000405	+0.004276	+0.037802	+0.184230						
表 2 承 (51.46229 mm	(20.105 mm) =0.01231066 ft	<i>x</i> (实际)mm	0.522071	0.6233926	0.633586	0.624532	0.5961976	0.5576433	0.4260493	0.166760	0					
r=0.79172754	$t_0 = 0.3093$ th = 31.357 mm $e = \frac{0.633586}{51.4623}$	$ar{p} \left(egin{matrix} y=0.85\mathrm{Rf} \ p=1 \end{smallmatrix} ight)$	0.823994	0.98391155	F	0.98571054	0.9409892	0.88013837	0.67244122	0.26317560	0					
	а Ю	$pigg(y=0.85{ m kf}igg)$	0.65237903	0.77898976	0.79172754	0.78041418	0.74500708	0.69682979	0.53239024	0.20836337	0					
×		x (给定)mm	0.522080	0.623057	0.633586	0.624189	0.596603	0.561919	0.463851	0.350990		0.239324	0.140913	0.064594	0.016442	c
1	<i>R=</i> 65 mm	y mm	65	58.5	55.25	52	48.5	45.5	39	32.5	31.357	26	19.5	13	6.5	o
採		y/R	1.0	6.0	0.85	0.8	0.746154	0.7	9.0	0.5	0.48242	0.4	0.3	0.2	0.1	с

$t_0=0.6403124$ (32.015 mm) $t_0=0.65$ (32.5 mm)	É≈0.367°		差量mm			-0.0011106	-0.0009803	+0.001144	+0.000049	+0.0001294	-0.000912	-0.000516						
	(u	1) 0639953 弧度	x (实际)mm		0	0.06207006	0.090718274	0,095993	0.0959437	0.09583311	0.08835002	0.0709937		0				
	=0.65 (32.5 m =0.3 (15 mm)	$a_{iin} = 17.5 mm$ $a_{inx} = 47.5 mm$ $= \frac{0.095993}{15} = 0.4$	$\left[\widetilde{p} \left(\substack{y=0.716 \ \mathrm{kf} \\ p=1} ight) ight)$. 0	0.64661028	0.94505093	Т	0.9994862	0.9983344	0.9203798	0.7395715		0				
	to- 1	т	$p\left(rac{y=0.716}{p=r} ight)$		y = 47.5	0.193983086	0.28351528	yr 0.3	0.29984587	0.2995003	0.27611394	0.22187144		y = 17.5				
		≈0.367°	差量			+0.00426	+0.000345		0	+0.000021	-0.0019526	-0.0024111	+0.00545					
	.015 mm)	0639953 弧度	a(实际)mm		0	0.05670221	0.08939256		0.095993	0.0959604	0.08939256	0.07288886	0.044696056	0	2			
	0.6403124 (32 0.3 (15 mm)	n = 17, 0.05 mm x = 47, 015 mm 0.095993 = 0.0	$\tilde{p}ig(egin{array}{c} y=0.707 \ \mathrm{BT} \ p=1 \ \end{pmatrix}$		0	0.5906911	0.9312404		1	0.99966119	0.9312404	0.75931433	0.46561787	0				
	to=	ц Ш Ш В Ш В В Ш В В В В В В В В В В В В	$p\left(\frac{y=0.707 \text{ Bf}}{p=r}\right)$		y = 47.015	0.17720733	0.27937212		^{y,} 0.3	0.29989836	0.27937212	0.2277943	0.13968536	y = 17.015 0				
			空间角应 磨量 cronm	0		0.0609595	0.0897380	0.0971374	0.095993	0.0959625	0.0874380	0.0704775	0.0501420					
	X	mm	<i>x</i> (缺面磨 去)mm	0.610350		0.4943835	0.390624	0.3128996	0.305175	0.2990715	0.219726	0.1525875	0.0976506		0.0549315	0.024414	0,0061035	0
	11	R=50	a(给定)mm	0.610350		0.555343	0.480362	0.409037	0.401168	0.395034	0.307164	0.223065	0.147798		0.085310	0.038601	0.009753	0
	紙		y mm	50		45	40	3 5.8	35.35	35	30	25	20		15	IO	5	0
			y/R	1.0		0.9	0.8	0.716	0.707	0.7	0.6	0.5	0.4		0.3	0.2	0.1	0

表 8

1 期

,

产生非球面的新机构原理

49

这意味着要使 y=0.85 及 y=1.0 两带得到预定的非球面量,可以有两个解,一个是大环,另一个是小环。将其它带的磨去量和给定曲线的差量算出,列于表 2 的 右 边。从表 2 中可以看到,用大环及小环得到的结果完全一样,并且在 y=48.5 毫米以上有足够好的精度。从表 2 中还可以看到,在 y=39 毫米带的差量达+38 微米(欠磨)之多,所以必须再磨一次才有可能得到较好的结果。第二次磨的计算方法是将工件看作 ϕ 100 毫米,即取 R=50 毫米 作为单位。这时 y=1.0 的非球面量为 0.610350 毫米。先用一个球面来接近,这个球面使 y=1.0 及 y=0 和曲线吻合,其余各带有剩余量再用空间角来磨。这个球面的半径 R_a 为

 $R_{a} = \frac{50^{2}}{2 \times 0.610350} = 2048.0 \ \text{@} \ \text{\%}_{o}$

表 3 列出取 r=0.3(15 毫米)的环在 t₀=32.015 及 t₀=32.5 两个位置分别计算得出的结果。可以看出, t₀=32.5 的位置较好。差量的正值表示欠磨,负值表示超磨。有些地方超磨量在 1 微米左右。对于最大非球面量为 0.63 毫米来说, 1 微米的误差已是不大的了。 y=25 毫米以下已进入中央遮拦区可以不加考虑。

为了适应第二次磨时的球面吻合,工具轴必须在对称平面内转过 α 角,其值为

$$\sin a = \frac{t_0}{R_a} = \frac{32.5}{2048} = 0.01586914$$
 弧度。

这个例子说明用空间角 8 来产生 Sohmidt 非球面的办法是可行的。只要在铣磨平面的机器 上,工具轴在垂直于对称平面方向有调整倾斜的机构,这个调整量是很小的。当然,机器轴 系的精度应足够高,但结构是简单的,并可适用于很大的口径范围。

Principles of new mechanisms for producing aspherical surfaces

Pan Junhua

(Nanjing Astronomical Instruments Factory)

(Received 17 February1980)

Abstract

In this article, principles of two new mechanisms for producing usual aspherical surfaces are proposed. The geometrical relationships are discussed. As a special feature of this method, the grinding instrument is always in line contact with the work piece during grinding and continuity of produced surface will be expected.